Ela a Note on Simultaneous Block Diagonally Stable Matrices
نویسنده
چکیده
Abstract. Consider a set of square real matrices of the same size A = {A1, A2, . . . , AN}, where each matrix is partitioned, in the same way, into blocks such that the diagonal ones are square matrices. Under the assumption that the diagonal blocks in the same position have a common Lyapunov solution, sufficient conditions for the existence of a common Lyapunov solution with block diagonal structure for A are presented. Furthermore, as a by-product, an algorithm for the construction of such a common Lyapunov solution is proposed.
منابع مشابه
Ela the Eigenvalue Distribution of Block Diagonally Dominant Matrices and Block H−matrices
The paper studies the eigenvalue distribution of some special matrices, including block diagonally dominant matrices and block H−matrices. A well-known theorem of Taussky on the eigenvalue distribution is extended to such matrices. Conditions on a block matrix are also given so that it has certain numbers of eigenvalues with positive and negative real parts.
متن کاملEla Schur Complements of Generally Diagonally Dominant Matrices and a Criterion for Irreducibility of Matrices∗
As is well known, the Schur complements of strictly or irreducibly diagonally dominant matrices are H−matrices; however, the same is not true of generally diagonally dominant matrices. This paper proposes some conditions on the generally diagonally dominant matrix A and the subset α ⊂ {1, 2, . . . , n} so that the Schur complement matrix A/α is an H−matrix. These conditions are then applied to ...
متن کاملA note on approximation conditions, standard triangularizability and a power set topology
The main result of this article is that for collections of entry-wise non-negative matrices the property of possessing a standard triangularization is stable under approximation. The methodology introduced to prove this result allows us to offer quick proofs of the corresponding results of [B. R. Yahaghi, Near triangularizability implies triangularizability, Canad. Math. Bull. 47, (2004), no. 2...
متن کاملEla on Generalized Schur Complement of Nonstrictly Diagonally Dominant Matrices and General H-matrices
This paper proposes the definition of the generalized Schur complement on nonstrictly diagonally dominant matrices and general H−matrices by using a particular generalized inverse, and then, establishes some significant results on heredity, nonsingularity and the eigenvalue distribution for these generalized Schur complements.
متن کامل